HIERARCHICAL LINEAR MODELS HLM v8.2 多层阶线性模型工具hierarchical linear models 060678

hierarchical linear models HLM v8.2 在社会研究等领域060678,研究数据往往具有层次结构。也就是说,研究的个体主体可以被分类或安排在群体中,这些群体本身具有影响研究的品质。显然,对这些数据的分析需要专门的软件。已经开发了分层线性和非线性模型(也称为多级模型),以允许在单个分析中研究任何级别的关系,同时不忽略与分层的每个级别相关的可变性。HLM将模型与结果变量相匹配,从而生成具有解释变量的线性模型,这些解释变量利用每个级别指定的变量来解释每个级别的变化。HLM不仅估计每个级别的模型系数,而且预测每个级别的每个采样单元的随机效应。

  • can fit for two-, three- and four-level models with continuous, count, ordinal, and nominal outcome variables.
  • is capable of fitting multivariate models where the variance at the lowest level of the hierarchy can assume a variety of forms/structures.
  • offers a choice of three- and four-level nested models for cross-sectional and longitudinal models and four-way cross-classified and nested mixture models.
  • allows the fitting of hierarchical models with dependent random effects (spatial design models).
  • has the ability to estimate an HLM from incomplete data in the form of a completely automated approach that generates and analyses multiply imputed data sets from incomplete data. The model is fully multivariate and enables the analyst to strengthen imputation through auxiliary variables.
  • includes the option to fit flexible combinations of Fixed Intercepts and Random Coefficients (FIRC) are now included in HLM2, HLM3, HLM4, HCM2, and HCM3. 
  • can analyze multiply-imputed/plausible value data.
  • has an option to fit V-known models. 

本页收录的具体版本如下:
HIERARCHICAL LINEAR MODELS (HLM v8.2) EN 单机激活版

您需要先赞赏 580元 才能下载此资源!立即赞赏
声明:本站内容仅限用于测试、学习环境使用!在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站和媒体平台。如若本站内容侵犯了原著者的合法权益,请联系客服或发送邮件:gosoftvip@163.com「需要权利证明」本站将及时下架相应内容!
0
网站访问慢,请刷新网页!搜索软件请尽量缩短关键词!
显示验证码